Mammographic compression--a need for mechanical standardization.
نویسندگان
چکیده
BACKGROUND A lack of consistent guidelines regarding mammographic compression has led to wide variation in its technical execution. Breast compression is accomplished by means of a compression paddle, resulting in a certain contact area between the paddle and the breast. This procedure is associated with varying levels of discomfort or pain. On current mammography systems, the only mechanical parameter available in estimating the degree of compression is the physical entity of force (daN). Recently, researchers have suggested that pressure (kPa), resulting from a specific force divided by contact area on a breast, might be a more appropriate parameter for standardization. Software has now become available which enables device-independent cross-comparisons of key mammographic metrics, such as applied compression pressure (force divided by contact area), breast density and radiation dose, between patient populations. PURPOSE To compare the current compression practice in mammography between different imaging sites in the Netherlands and the United States from a mechanical point of view, and to investigate whether the compression protocols in these countries can be improved by standardization of pressure (kPa) as an objective mechanical parameter. MATERIALS AND METHODS We retrospectively studied the available parameters of a set of 37,518 mammographic compressions (9188 women) from the Dutch national breast cancer screening programme (NL data set) and of another set of 7171 compressions (1851 women) from a breast imaging centre in Pittsburgh, PA (US data set). Both sets were processed using VolparaAnalytics and VolparaDensity to obtain the applied average force, pressure, breast thickness, breast volume, breast density and average glandular dose (AGD) as a function of the size of the contact area between the breast and the paddle. RESULTS On average, the forces and pressures applied in the NL data set were significantly higher than in the US data set. The relative standard deviation was larger in the US data set than in the NL data set. Breasts were compressed with a force in the high range of >15 daN for 31.1% and >20 kPa for 12.3% of the NL data set versus, respectively, 1.5% and 1.7% of the US data set. In the low range we encountered compressions with a pressure of <5 daN for 21.1% and <5 kPa for 21.7% of the US data set versus, respectively, 0.05% and 0.6% in the NL data set. Both the average and the standard deviation of the AGD were higher in the US data set. CONCLUSION (1) Current mammographic breast compression policies lead to a wide range of applied forces and pressures, with large variations both within and between clinical sites. (2) Pressure standardization could decrease variation, improve reproducibility, and reduce the risk of unnecessary pain, unnecessary high radiation doses and inadequate image quality.
منابع مشابه
A novel approach to mammographic breast compression: Improved standardization and reduced discomfort by controlling pressure instead of force.
PURPOSE In x-ray mammography, flattening of the breast improves image quality and reduces absorbed dose. Current mammographic compression guidelines are based on applying a standardized force to each breast. Because breast size is not taken into consideration, this approach leads to large variations in applied pressure (force applied per unit contact area). It is the authors' hypothesis that a ...
متن کاملطراحی روشی کارآمد در فشرده سازی چند مرحلهای تصاویر ماموگرافی جهت ذخیره سازی و انتقال بهینه بر مبنای شبکههای عصبی مصنوعی و الگوریتم L-M
Background: In the telemedicine process, using digital techniques in disease diagnosis caused to have felt needs of archiving and storing patient information and high bandwidth in data transfer. Methods: This study aimed at introducing an efficient way of multi-stage compression of mammographic image data based LM algorithm and artificial neural networks. At First, data derived from mamm...
متن کاملDetection, Synthesis and Compression in Mammographic Image Analysis with a Hierarchical Image Probability Model
We develop a probability model over image spaces and demonstrate its broad utility in mammographic image analysis. The model employs a pyramid representation to factor images across scale and a tree-structured set of hidden variables to capture long-range spatial dependencies. This factoring makes the computation of the density functions local and tractable. The result is a hierarchical mixture...
متن کاملTowards safe and effective phytomedicines:the need for standardization
Over the past 20 years herbal medicinal products have become a topic of increasing global importance, with both medical and economic implications. In developing countries in Africa and Asia, botanicals have always played a central role in healthcare. Data from WHO suggest that 65 to 80% of the populations in these countries depend on traditional and botanical medicines as the primary source of ...
متن کاملModeling of Compression Curves of Flexible Polyurethane Foam with Variable Density, Chemical Formulations and Strain Rates
Flexible Polyurethane (PU) foam samples with different densities and chemical formulations were tested in quasi-static stress-strain compression tests. The compression tests were performed using the Lloyd LR5K Plus instrument at fixed compression strain rate of 0.033 s-1 and samples were compressed up to 70% compression strains. All foam samples were tested in the foam rise direction and their ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of radiology
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2015